Selected Response

1. A delivery driver is traveling a total of 250 miles from a warehouse to a store at an average speed of 45 miles per hour. The function $f(x)=250-45 x$ represents the distance remaining, in miles, after traveling for \boldsymbol{x} hours.

Which statement about the value $f(2)$ is true?
A The value $f(2)=90$, and it represents a remaining distance of 90 miles after 2 hours of traveling.

B The value $f(2)=90$, and it represents the delivery driver having traveled 90 miles after 2 hours.

C The value $f(2)=160$, and it represents a remaining distance of 160 miles after 2 hours of traveling.

D The value $f(2)=160$, and it represents the delivery driver having traveled 160 miles after 2 hours.
2. The table represents the amount of time it takes a person who mows lawns to mow \boldsymbol{n} lawns in one neighborhood.

Number of Lawns, \boldsymbol{n}	Time, \boldsymbol{T} (in minutes)
2	92
3	138
6	276
9	414

What is the average rate of change of the function over the interval $\boldsymbol{n}=\mathbf{3}$ to $\boldsymbol{n}=\mathbf{9}$?
A 23 minutes per lawn
B 46 minutes per lawn
C 138 minutes per lawn
D 276 minutes per lawn
3. Andrew periodically tracks the account balance of his investment account.

Year	Account Balance
2	$\$ 4,127.89$
4	$\$ 4,868.41$
5	$\$ 5,287.10$

The balance of the account can be predicted by the equation $y=3,500(1.086)^{n}$, where \boldsymbol{y} represents the amount in the account, and \boldsymbol{n} is the number of years since Andrew opened the account.

Which two statements are true?
A Andrew opened the account with $\$ 3,500$.
B Andrew opened the account with $\$ 4,127.89$.
C The account grows about 8.6% each year.
D The account loses about 8.6\% each year.
E The account earns $\$ 384.40$ each year.

Performance Event

4. Coach Hopkins purchases a new machine to launch softballs up in the air to practice catching pop-flies. A softball is launched at an initial upward velocity of 64 feet per second from the new machine on the ground. The function $h(t)=-16 t^{2}+64 t$ models the height of the ball after \boldsymbol{t} seconds from launch.

Part A

How long will it take for the ball to reach its maximum height, in seconds? What will the maximum height of the ball be at this time?

Part B

Suppose the softball player misses the catch. Approximately how many seconds will it take for the ball to hit the ground?

